Papers
Topics
Authors
Recent
2000 character limit reached

Using novelty-biased GA to sample diversity in graphs satisfying constraints (1503.06342v1)

Published 21 Mar 2015 in physics.soc-ph, cs.NE, cs.SI, and math.CO

Abstract: The structure of the network underlying many complex systems, whether artificial or natural, plays a significant role in how these systems operate. As a result, much emphasis has been placed on accurately describing networks using network theoretic metrics. When it comes to generating networks with similar properties, however, the set of available techniques and properties that can be controlled for remains limited. Further, whilst it is becoming clear that some of the metrics currently used to control the generation of such networks are not very prescriptive so that networks could potentially exhibit very different higher-order structure within those constraints, network generating algorithms typically produce fairly contrived networks and lack mechanisms by which to systematically explore the space of network solutions. In this paper, we explore the potential of a multi-objective novelty-biased GA to provide a viable alternative to these algorithms. We believe our results provide the first proof of principle that (i) it is possible to use GAs to generate graphs satisfying set levels of key classical graph theoretic properties and (ii) it is possible to generate diverse solutions within these constraints. The paper is only a preliminary step, however, and we identify key avenues for further development.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.