Papers
Topics
Authors
Recent
Search
2000 character limit reached

Clearing Analysis on Phases: Exact Limiting Probabilities for Skip-free, Unidirectional, Quasi-birth-death Processes

Published 19 Mar 2015 in math.PR | (1503.05899v3)

Abstract: Many problems in computing, service, and manufacturing systems can be modeled via infinite repeating Markov chains with an infinite number of levels and a finite number of phases. Many such chains are quasi-birth-death processes (QBDs) with transitions that are skip-free in level, in that one can only transition between consecutive levels, and unidirectional in phase, in that one can only transition from lower-numbered phases to higher-numbered phases. We present a procedure, which we call Clearing Analysis on Phases (CAP), for determining the limiting probabilities of such Markov chains exactly. The CAP method yields the limiting probability of each state in the repeating portion of the chain as a linear combination of scalar bases raised to a power corresponding to the level of the state. The weights in these linear combinations can be determined by solving a finite system of linear equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.