A Simple Convergence Analysis of Bregman Proximal Gradient Algorithm (1503.05601v3)
Abstract: In this paper, we provide a simple convergence analysis of proximal gradient algorithm with Bregman distance, which provides a tighter bound than existing result. In particular, for the problem of minimizing a class of convex objective functions, we show that proximal gradient algorithm with Bregman distance can be viewed as proximal point algorithm that incorporates another Bregman distance. Consequently, the convergence result of the proximal gradient algorithm with Bregman distance follows directly from that of the proximal point algorithm with Bregman distance, and this leads to a simpler convergence analysis with a tighter convergence bound than existing ones. We further propose and analyze the backtracking line search variant of the proximal gradient algorithm with Bregman distance. Simulation results show that the line search method significantly improves the convergence performance of the algorithm.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.