Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distinguishing symmetric quantum oracles and quantum group multiplication (1503.05548v1)

Published 18 Mar 2015 in quant-ph

Abstract: Given a unitary representation of a finite group on a finite-dimensional Hilbert space, we show how to find a state whose translates under the group are distinguishable with the highest probability. We apply this to several quantum oracle problems, including the GROUP MULTIPLICATION problem, in which the product of an ordered $n$-tuple of group elements is to be determined by querying elements of the tuple. For any finite group $G$, we give an algorithm to find the product of two elements of $G$ with a single quantum query with probability $2/|G|$. This generalizes Deutsch's Algorithm from $Z_2$ to an arbitrary finite group. We further prove that this algorithm is optimal. We also introduce the HIDDEN CONJUGATING ELEMENT PROBLEM, in which the oracle acts by conjugating by an unknown element of the group. We show that for many groups, including dihedral and symmetric groups, the unknown element can be determined with probability $1$ using a single quantum query.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.