PBW-type filtration on quantum groups of type $A_n$ (1503.05428v1)
Abstract: We will introduce an $\mathbb{N}$-filtration on the negative part of a quantum group of type $A_n$, such that the associated graded algebra is a q-commutative polynomial algebra. This filtration is given in terms of the representation theory of quivers, by realizing the quantum group as the Hall algebra of a quiver. We show that the induced associated graded module of any simple finite-dimensional module (of type 1) is isomorphic to a quotient of this polynomial algebra by a monomial ideal, and we provide a monomial basis for this associated graded module. This construction can be viewed as a quantum analog of the classical PBW framework, and in fact, by considering the classical limit, this basis is the monomial basis provided by Feigin, Littelmann and the second author in the classical setup.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.