Papers
Topics
Authors
Recent
Search
2000 character limit reached

$gen$CNN: A Convolutional Architecture for Word Sequence Prediction

Published 17 Mar 2015 in cs.CL | (1503.05034v2)

Abstract: We propose a novel convolutional architecture, named $gen$CNN, for word sequence prediction. Different from previous work on neural network-based language modeling and generation (e.g., RNN or LSTM), we choose not to greedily summarize the history of words as a fixed length vector. Instead, we use a convolutional neural network to predict the next word with the history of words of variable length. Also different from the existing feedforward networks for language modeling, our model can effectively fuse the local correlation and global correlation in the word sequence, with a convolution-gating strategy specifically designed for the task. We argue that our model can give adequate representation of the history, and therefore can naturally exploit both the short and long range dependencies. Our model is fast, easy to train, and readily parallelized. Our extensive experiments on text generation and $n$-best re-ranking in machine translation show that $gen$CNN outperforms the state-of-the-arts with big margins.

Citations (28)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.