Papers
Topics
Authors
Recent
2000 character limit reached

Information Geometry and the Renormalization Group (1503.03978v2)

Published 13 Mar 2015 in cond-mat.stat-mech and hep-th

Abstract: Information theoretic geometry near critical points in classical and quantum systems is well understood for exactly solvable systems. Here we show that renormalization group flow equations can be used to construct the information metric and its associated quantities near criticality, for both classical and quantum systems, in an universal manner. We study this metric in various cases and establish its scaling properties in several generic examples. Scaling relations on the parameter manifold involving scalar quantities are studied, and scaling exponents are identified. The meaning of the scalar curvature and the invariant geodesic distance in information geometry is established and substantiated from a renormalization group perspective.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.