Papers
Topics
Authors
Recent
2000 character limit reached

A note on symplectic and Poisson linearization of semisimple Lie algebra actions (1503.03840v1)

Published 12 Mar 2015 in math.SG, math.DG, and math.DS

Abstract: In this note we prove that an analytic symplectic action of a semisimple Lie algebra can be locally linearized in Darboux coordinates. This result yields simultaneous analytic linearization for Hamiltonian vector fields in a neighbourhood of a common zero. We also provide an example of smooth non-linearizable Hamiltonian action with semisimple linear part. The smooth analogue only holds if the semisimple Lie algebra is of compact type. An analytic equivariant b-Darboux theorem for b-Poisson manifolds and an analytic equivariant Weinstein splitting theorem for general Poisson manifolds are also obtained in the Poisson setting.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.