2000 character limit reached
Minimal surface singularities are Lipschitz normally embedded (1503.03301v2)
Published 11 Mar 2015 in math.AG
Abstract: Any germ of a complex analytic space is equipped with two natural metrics: the {\it outer metric} induced by the hermitian metric of the ambient space and the {\it inner metric}, which is the associated riemannian metric on the germ. We show that minimal surface singularities are Lipschitz normally embedded (LNE), i.e., the identity map is a bilipschitz homeomorphism between outer and inner metrics, and that they are the only rational surface singularities with this property.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.