Papers
Topics
Authors
Recent
2000 character limit reached

Minimal surface singularities are Lipschitz normally embedded (1503.03301v2)

Published 11 Mar 2015 in math.AG

Abstract: Any germ of a complex analytic space is equipped with two natural metrics: the {\it outer metric} induced by the hermitian metric of the ambient space and the {\it inner metric}, which is the associated riemannian metric on the germ. We show that minimal surface singularities are Lipschitz normally embedded (LNE), i.e., the identity map is a bilipschitz homeomorphism between outer and inner metrics, and that they are the only rational surface singularities with this property.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.