Form Inequalities for Symmetric Contraction Semigroups
Abstract: Consider --- for the generator ({-}A) of a symmetric contraction semigroup over some measure space $\mathrm{X}$, $1\le p < \infty$, $q$ the dual exponent and given measurable functions $F_j,: G_j : \mathbb{C}d \to \mathbb{C}$ --- the statement: $$ \mathrm{Re}\, \sum_{j=1}m \int_{\mathrm{X}} A F_j(\mathbf{f}) \cdot G_j(\mathbf{f}) \,\,\ge \,\,0 $$ {\em for all $\mathbb{C}d$-valued measurable functions $\mathbf{f}$ on $\mathrm{X}$ such that $F_j(\mathbf{f}) \in \mathrm{dom}(A_p)$ and $G_j(\mathbf{f}) \in \mathrm{L}q(\mathrm{X})$ for all $j$.} It is shown that this statement is valid in general if it is valid for $\mathrm{X}$ being a two-point Bernoulli $(\frac{1}{2}, \frac{1}{2})$-space and $A$ being of a special form. As a consequence we obtain a new proof for the optimal angle of $\mathrm{L}{p}$-analyticity for such semigroups, which is essentially the same as in the well-known sub-Markovian case. The proof of the main theorem is a combination of well-known reduction techniques and some representation results about operators on $\mathrm{C}(K)$-spaces. One focus of the paper lies on presenting these auxiliary techniques and results in great detail.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.