Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 61 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Normal and anomalous diffusion of Brownian particles on disordered potentials (1503.02709v1)

Published 9 Mar 2015 in cond-mat.dis-nn and cond-mat.stat-mech

Abstract: In this work we study the transition from normal to anomalous diffusion of Brownian particles on disordered potentials. The potential model consists of a series of "potential hills" (defined on unit cell of constant length) whose heights are chosen randomly from a given distribution. We calculate the exact expression for the diffusion coefficient in the case of uncorrelated potentials for arbitrary distributions. We particularly show that when the potential heights have a Gaussian distribution (with zero mean and a finite variance) the diffusion of the particles is always normal. In contrast when the distribution of the potential heights are exponentially distributed we show that the diffusion coefficient vanishes when system is placed below a critical temperature. We calculate analytically the diffusion exponent for the anomalous (subdiffusive) phase by using the so-called "random trap model". We test our predictions by means of Langevin simulations obtaining good agreement within the accuracy of our numerical calculations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.