Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The largest eigenvalue of a convex function, duality, and a theorem of Slodkowski (1503.02231v2)

Published 8 Mar 2015 in math.AP

Abstract: First, we provide an exposition of a theorem due to Slodkowski regarding the largest "eigenvalue" of a convex function. In his work on the Dirichlet problem, Slodkowski introduces a generalized second-order derivative which for $C2$ functions corresponds to the largest eigenvalue of the Hessian. The theorem allows one to extend an a.e lower bound on this largest "eigenvalue" to a bound holding everywhere. Via the Dirichlet duality theory of Harvey and Lawson, this result has been key to recent progress on the fully non-linear, elliptic Dirchlet problem. Second, we give a dual interpretation of this largest eigenvalue using the Legendre-Fenchel transform, and use this dual perspective to provide an alternative proof to an important step in the proof of the theorem.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.