Papers
Topics
Authors
Recent
2000 character limit reached

Color Image Classification via Quaternion Principal Component Analysis Network

Published 5 Mar 2015 in cs.CV | (1503.01657v1)

Abstract: The Principal Component Analysis Network (PCANet), which is one of the recently proposed deep learning architectures, achieves the state-of-the-art classification accuracy in various databases. However, the performance of PCANet may be degraded when dealing with color images. In this paper, a Quaternion Principal Component Analysis Network (QPCANet), which is an extension of PCANet, is proposed for color images classification. Compared to PCANet, the proposed QPCANet takes into account the spatial distribution information of color images and ensures larger amount of intra-class invariance of color images. Experiments conducted on different color image datasets such as Caltech-101, UC Merced Land Use, Georgia Tech face and CURet have revealed that the proposed QPCANet achieves higher classification accuracy than PCANet.

Citations (69)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.