$τ$-tilting finite algebras, bricks and $g$-vectors (1503.00285v6)
Abstract: The class of support $\tau$-tilting modules was introduced to provide a completion of the class of tilting modules from the point of view of mutations. In this article we study $\tau$-tilting finite algebras, i.e. finite dimensional algebras $A$ with finitely many isomorphism classes of indecomposable $\tau$-rigid modules. We show that $A$ is $\tau$-tilting finite if and only if very torsion class in $\mod A$ is functorially finite. We observe that cones generated by $g$-vectors of indecomposable direct summands of each support $\tau$-tilting module form a simplicial complex $\Delta(A)$. We show that if $A$ is $\tau$-tilting finite, then $\Delta(A)$ is homeomorphic to an $(n-1)$-dimensional sphere, and moreover the partial order on support $\tau$-tilting modules can be recovered from the geometry of $\Delta(A)$. Finally we give a bijection between indecomposable $\tau$-rigid $A$-modules and bricks of $A$ satisfying a certain finiteness condition, which is automatic for $\tau$-tilting finite algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.