Papers
Topics
Authors
Recent
2000 character limit reached

A hypothesize-and-verify framework for Text Recognition using Deep Recurrent Neural Networks (1502.07540v1)

Published 26 Feb 2015 in cs.CV

Abstract: Deep LSTM is an ideal candidate for text recognition. However text recognition involves some initial image processing steps like segmentation of lines and words which can induce error to the recognition system. Without segmentation, learning very long range context is difficult and becomes computationally intractable. Therefore, alternative soft decisions are needed at the pre-processing level. This paper proposes a hybrid text recognizer using a deep recurrent neural network with multiple layers of abstraction and long range context along with a LLM to verify the performance of the deep neural network. In this paper we construct a multi-hypotheses tree architecture with candidate segments of line sequences from different segmentation algorithms at its different branches. The deep neural network is trained on perfectly segmented data and tests each of the candidate segments, generating unicode sequences. In the verification step, these unicode sequences are validated using a sub-string match with the LLM and best first search is used to find the best possible combination of alternative hypothesis from the tree structure. Thus the verification framework using LLMs eliminates wrong segmentation outputs and filters recognition errors.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.