Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The light-front gauge-invariant energy-momentum tensor (1502.06656v1)

Published 24 Feb 2015 in hep-ph, hep-lat, and nucl-th

Abstract: We provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbital angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube