Papers
Topics
Authors
Recent
Search
2000 character limit reached

Prediction error of cross-validated Lasso

Published 23 Feb 2015 in math.ST, math.PR, and stat.TH | (1502.06291v2)

Abstract: In spite of the wealth of literature on the theoretical properties of the Lasso, there is very little known when the value of the tuning parameter is chosen using the data, even though this is what actually happens in practice. We give a general upper bound on the prediction error of Lasso when the tuning parameter is chosen using a variant of 2-fold cross-validation. No special assumption is made about the structure of the design matrix, and the tuning parameter is allowed to be optimized over an arbitrary data-dependent set of values. The proof is based on a general principle that may extend to other kinds of cross-validation as well as to other penalized regression methods. Based on this result, we propose a new estimate for error variance in high dimensional regression and prove that it has good properties under minimal assumptions.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.