Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 145 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A class of stochastic differential equations with super-linear growth and non-Lipschitz coefficients (1502.04915v1)

Published 17 Feb 2015 in math.PR

Abstract: The purpose of this paper is to study some properties of solutions to one dimensional as well as multidimensional stochastic differential equations (SDEs in short) with super-linear growth conditions on the coefficients. Taking inspiration from \cite{BEHP, KBahlali, Bahlali}, we introduce a new {\it{local condition}} which ensures the pathwise uniqueness, as well as the non-contact property. We moreover show that the solution produces a stochastic flow of continuous maps and satisfies a large deviations principle of Freidlin-Wentzell type. Our conditions on the coefficients go beyond the existing ones in the literature. For instance, the coefficients are not assumed uniformly continuous and therefore can not satisfy the classical Osgood condition. The drift coefficient could not be locally monotone and the diffusion is neither locally Lipschitz nor uniformly elliptic. Our conditions on the coefficients are, in some sense, near the best possible. Our results are sharp and mainly based on Gronwall lemma and the localization of the time parameter in concatenated intervals

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube