Papers
Topics
Authors
Recent
Search
2000 character limit reached

Large deviations principle for stochastic delay differential equations with super-linearly growing coefficients

Published 1 Jan 2022 in math.PR | (2201.00143v1)

Abstract: We utilize the weak convergence method to establish the Freidlin--Wentzell large deviations principle (LDP) for stochastic delay differential equations (SDDEs) with super-linearly growing coefficients, which covers a large class of cases with non-globally Lipschitz coefficients. The key ingredient in our proof is the uniform moment estimate of the controlled equation, where we handle the super-linear growth of the coefficients by an iterative argument. Our results allow both the drift and diffusion coefficients of the considered equations to super-linearly grow not only with respect to the delay variable but also to the state variable. This work extends the existing results which develop the LDPs for SDDEs with super-linearly growing coefficients only with respect to the delay variable.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.