Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Regularity lemmas in a Banach space setting (1502.04849v3)

Published 17 Feb 2015 in math.CO and math.FA

Abstract: Szemer\'edi's regularity lemma is a fundamental tool in extremal graph theory, theoretical computer science and combinatorial number theory. Lov\'asz and Szegedy [L. Lov\'asz and B. Szegedy: Szemer\'edi's Lemma for the analyst, Geometric and Functional Analysis 17 (2007), 252-270] gave a Hilbert space interpretation of the lemma and an interpretation in terms of compact- ness of the space of graph limits. In this paper we prove several compactness results in a Banach space setting, generalising results of Lov\'asz and Szegedy as well as a result of Borgs, Chayes, Cohn and Zhao [C. Borgs, J.T. Chayes, H. Cohn and Y. Zhao: An Lp theory of sparse graph convergence I: limits, sparse random graph models, and power law distributions, arXiv preprint arXiv:1401.2906 (2014)].

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.