Inducing Approximately Optimal Flow Using Truthful Mediators
Abstract: We revisit a classic coordination problem from the perspective of mechanism design: how can we coordinate a social welfare maximizing flow in a network congestion game with selfish players? The classical approach, which computes tolls as a function of known demands, fails when the demands are unknown to the mechanism designer, and naively eliciting them does not necessarily yield a truthful mechanism. Instead, we introduce a weak mediator that can provide suggested routes to players and set tolls as a function of reported demands. However, players can choose to ignore or misreport their type to this mediator. Using techniques from differential privacy, we show how to design a weak mediator such that it is an asymptotic ex-post Nash equilibrium for all players to truthfully report their types to the mediator and faithfully follow its suggestion, and that when they do, they end up playing a nearly optimal flow. Notably, our solution works in settings of incomplete information even in the absence of a prior distribution on player types. Along the way, we develop new techniques for privately solving convex programs which may be of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.