Papers
Topics
Authors
Recent
Search
2000 character limit reached

From rubber bands to rational maps: A research report

Published 9 Feb 2015 in math.DS and math.CV | (1502.02561v3)

Abstract: This research report outlines work, partially joint with Jeremy Kahn and Kevin Pilgrim, which gives parallel theories of elastic graphs and conformal surfaces with boundary. One one hand, this lets us tell when one rubber band network is looser than another, and on the other hand tell when one conformal surface embeds in another. We apply this to give a new characterization of hyperbolic critically finite rational maps among branched self-coverings of the sphere, by a positive criterion: a branched covering is equivalent to a hyperbolic rational map if and only if there is an elastic graph with a particular "self-embedding" property. This complements the earlier negative criterion of W. Thurston.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.