Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Zero entropy subgroups of mapping class groups (1502.02288v3)

Published 8 Feb 2015 in math.DS

Abstract: Let $M$ be a compact surface with boundary. We are interested in the question of how a group action on $M$ permutes a finite invariant set $X \subset int(M)$. More precisely, how the algebraic properties of the induced group of permutations of a finite invariant set affects the dynamical properties of the group. Our main result shows that in many circumstances if the induced permutation group is not solvable then among the homeomorphisms in the group there must be one with a pseudo-Anosov component. We formulate this in terms of the mapping class group relative to the finite set and show the stronger result that in many circumstances (e.g. if $\partial M \ne \emptyset$) this mapping class group is itself solvable if it has no elements with pseudo-Anosov components.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.