Papers
Topics
Authors
Recent
2000 character limit reached

MALL proof equivalence is Logspace-complete, via binary decision diagrams

Published 6 Feb 2015 in cs.LO | (1502.01993v2)

Abstract: Proof equivalence in a logic is the problem of deciding whether two proofs are equivalent modulo a set of permutation of rules that reflects the commutative conversions of its cut-elimination procedure. As such, it is related to the question of proofnets: finding canonical representatives of equivalence classes of proofs that have good computational properties. It can also be seen as the word problem for the notion of free category corresponding to the logic. It has been recently shown that proof equivalence in MLL (the multiplicative with units fragment of linear logic) is PSPACE-complete, which rules out any low-complexity notion of proofnet for this particular logic. Since it is another fragment of linear logic for which attempts to define a fully satisfactory low-complexity notion of proofnet have not been successful so far, we study proof equivalence in MALL- (multiplicative-additive without units fragment of linear logic) and discover a situation that is totally different from the MLL case. Indeed, we show that proof equivalence in MALL- corresponds (under AC0 reductions) to equivalence of binary decision diagrams, a data structure widely used to represent and analyze Boolean functions efficiently. We show these two equivalent problems to be LOGSPACE-complete. If this technically leaves open the possibility for a complete solution to the question of proofnets for MALL-, the established relation with binary decision diagrams actually suggests a negative solution to this problem.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.