Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A four moments theorem for Gamma limits on a Poisson chaos (1502.01568v1)

Published 5 Feb 2015 in math.PR

Abstract: This paper deals with sequences of random variables belonging to a fixed chaos of order $q$ generated by a Poisson random measure on a Polish space. The problem is investigated whether convergence of the third and fourth moment of such a suitably normalized sequence to the third and fourth moment of a centred Gamma law implies convergence in distribution of the involved random variables. A positive answer is obtained for $q=2$ and $q=4$. The proof of this four moments theorem is based on a number of new estimates for contraction norms. Applications concern homogeneous sums and $U$-statistics on the Poisson space.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.