Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Structure of attractors in randomly connected networks (1502.01091v2)

Published 4 Feb 2015 in cond-mat.stat-mech and nlin.CD

Abstract: The deterministic dynamics of randomly connected neural networks are studied, where a state of binary neurons evolves according to a discreet-time synchronous update rule. We give a theoretical support that the overlap of systems' states between the current and a previous time develops in time according to a Markovian stochastic process in large networks. This Markovian process predicts how often a network revisits one of previously visited states, depending on the system size. The state concentration probability, i.e., the probability that two distinct states co-evolve to the same state, is utilized to analytically derive various characteristics that quantify attractors' structure. The analytical predictions about the total number of attractors, the typical cycle length, and the number of states belonging to all attractive cycles match well with numerical simulations for relatively large system sizes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.