Papers
Topics
Authors
Recent
2000 character limit reached

Wavelet-based Estimator for the Hurst Parameters of Fractional Brownian Sheet (1502.00860v1)

Published 3 Feb 2015 in cs.IT and math.IT

Abstract: It is proposed a class of statistical estimators $\hat H =(\hat H_1, \ldots, \hat H_d)$ for the Hurst parameters $H=(H_1, \ldots, H_d)$ of fractional Brownian field via multi-dimensional wavelet analysis and least squares, which are asymptotically normal. These estimators can be used to detect self-similarity and long-range dependence in multi-dimensional signals, which is important in texture classification and improvement of diffusion tensor imaging (DTI) of nuclear magnetic resonance (NMR). Some fractional Brownian sheets will be simulated and the simulated data are used to validate these estimators. We find that when $H_i \geq 1/2$, the estimators are efficient, and when $H_i < 1/2$, there are some bias.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.