Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adapted Variational Bayes for Functional Data Registration, Smoothing, and Prediction

Published 2 Feb 2015 in stat.ME | (1502.00552v3)

Abstract: We propose a model for functional data registration that compares favorably to the best methods of functional data registration currently available. It also extends current inferential capabilities for unregistered data by providing a flexible probabilistic framework that 1) allows for functional prediction in the context of registration and 2) can be adapted to include smoothing and registration in one model. The proposed inferential framework is a Bayesian hierarchical model where the registered functions are modeled as Gaussian processes. To address the computational demands of inference in high-dimensional Bayesian models, we propose an adapted form of the variational Bayes algorithm for approximate inference that performs similarly to MCMC sampling methods for well-defined problems. The efficiency of the adapted variational Bayes (AVB) algorithm allows variability in a predicted registered, warping, and unregistered function to be depicted separately via bootstrapping. Temperature data related to the el-ni~no phenomenon is used to demonstrate the unique inferential capabilities for prediction provided by this model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.