Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bases and Structure Constants of Generalized Splines with Integer Coefficients on Cycles (1502.00176v1)

Published 31 Jan 2015 in math.RA

Abstract: An integer generalized spline is a set of vertex labels on an edge-labeled graph that satisfy the condition that if two vertices are joined by an edge, the vertex labels are congruent modulo the edge label. Foundational work on these objects comes from Gilbert, Polster, and Tymoczko, who generalize ideas from geometry/topology (equivariant cohomology rings) and algebra (algebraic splines) to develop the notion of generalized splines. Gilbert, Polster, and Tymoczko prove that the ring of splines on a graph can be decomposed in terms of splines on its subgraphs (in particular, on trees and cycles), and then fully analyze splines on trees. Following Handschy-Melnick-Reinders and Rose, we analyze splines on cycles, in our case integer generalized splines. The primary goal of this paper is to establish two new bases for the module of integer generalized splines on cycles: the triangulation basis and the King basis. Unlike bases in previous work, we are able to characterize each basis element completely in terms of the edge labels of the underlying cycle. As an application we explicitly construct the multiplication table for the ring of integer generalized splines in terms of the King basis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube