Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Spatial Extent of Branching Brownian Motion (1501.07693v2)

Published 30 Jan 2015 in cond-mat.stat-mech, math-ph, math.MP, and math.PR

Abstract: We study the one dimensional branching Brownian motion starting at the origin and investigate the correlation between the rightmost ($X_{\max}\geq 0$) and leftmost ($X_{\min} \leq 0$) visited sites up to time $t$. At each time step the existing particles in the system either diffuse (with diffusion constant $D$), die (with rate $a$) or split into two particles (with rate $b$). We focus on the regime $b \leq a$ where these two extreme values $X_{\max}$ and $X_{\min}$ are strongly correlated. We show that at large time $t$, the joint probability distribution function (PDF) of the two extreme points becomes stationary $P(X,Y,t \to \infty) \to p(X,Y)$. Our exact results for $p(X,Y)$ demonstrate that the correlation between $X_{\max}$ and $X_{\min}$ is nonzero, even in the stationary state. From this joint PDF, we compute exactly the stationary PDF $p(\zeta)$ of the (dimensionless) span $\zeta = {(X_{\max} - X_{\min})}/{\sqrt{D/b}}$, which is the distance between the rightmost and leftmost visited sites. This span distribution is characterized by a linear behavior ${p}(\zeta) \sim \frac{1}{2} \left(1 + \Delta \right) \zeta$ for small spans, with $\Delta = \left(\frac{a}{b} -1\right)$. In the critical case ($\Delta = 0$) this distribution has a non-trivial power law tail ${p}(\zeta) \sim 8 \pi \sqrt{3} /\zeta3$ for large spans. On the other hand, in the subcritical case ($\Delta > 0$), we show that the span distribution decays exponentially as ${p}(\zeta) \sim (A2/2) \zeta \exp \left(- \sqrt{\Delta}~\zeta\right)$ for large spans, where $A$ is a non-trivial function of $\Delta$ which we compute exactly. We show that these asymptotic behaviors carry the signatures of the correlation between $X_{\max}$ and $X_{\min}$. Finally we verify our results via direct Monte Carlo simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.