Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Divide-And-Conquer Classification Based on Feature-Space Decomposition (1501.07584v1)

Published 29 Jan 2015 in cs.LG

Abstract: This study presents a divide-and-conquer (DC) approach based on feature space decomposition for classification. When large-scale datasets are present, typical approaches usually employed truncated kernel methods on the feature space or DC approaches on the sample space. However, this did not guarantee separability between classes, owing to overfitting. To overcome such problems, this work proposes a novel DC approach on feature spaces consisting of three steps. Firstly, we divide the feature space into several subspaces using the decomposition method proposed in this paper. Subsequently, these feature subspaces are sent into individual local classifiers for training. Finally, the outcomes of local classifiers are fused together to generate the final classification results. Experiments on large-scale datasets are carried out for performance evaluation. The results show that the error rates of the proposed DC method decreased comparing with the state-of-the-art fast SVM solvers, e.g., reducing error rates by 10.53% and 7.53% on RCV1 and covtype datasets respectively.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.