Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 138 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Ellipsoidal cones in normed vector spaces (1501.07493v1)

Published 29 Jan 2015 in math.FA and math.MG

Abstract: We give two characterizations of cones over ellipsoids in real normed vector spaces. Let $C$ be a closed convex cone with nonempty interior such that $C$ has a bounded section of codimension $1$. We show that $C$ is a cone over an ellipsoid if and only if every bounded section of $C$ has a center of symmetry. We also show that $C$ is a cone over an ellipsoid if and only if the affine span of $\partial C \cap \partial(a - C)$ has codimension $1$ for every point $a$ in the interior of $C$. These results generalize the finite-dimensional cases proved in (Jer\'onimo-Castro and McAllister, 2013).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube