Ellipsoidal cones in normed vector spaces (1501.07493v1)
Abstract: We give two characterizations of cones over ellipsoids in real normed vector spaces. Let $C$ be a closed convex cone with nonempty interior such that $C$ has a bounded section of codimension $1$. We show that $C$ is a cone over an ellipsoid if and only if every bounded section of $C$ has a center of symmetry. We also show that $C$ is a cone over an ellipsoid if and only if the affine span of $\partial C \cap \partial(a - C)$ has codimension $1$ for every point $a$ in the interior of $C$. These results generalize the finite-dimensional cases proved in (Jer\'onimo-Castro and McAllister, 2013).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.