Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Online estimation of the geometric median in Hilbert spaces : non asymptotic confidence balls (1501.06930v1)

Published 27 Jan 2015 in math.ST and stat.TH

Abstract: Estimation procedures based on recursive algorithms are interesting and powerful techniques that are able to deal rapidly with (very) large samples of high dimensional data. The collected data may be contaminated by noise so that robust location indicators, such as the geometric median, may be preferred to the mean. In this context, an estimator of the geometric median based on a fast and efficient averaged non linear stochastic gradient algorithm has been developed by Cardot, C\'enac and Zitt (2013). This work aims at studying more precisely the non asymptotic behavior of this algorithm by giving non asymptotic confidence balls. This new result is based on the derivation of improved $L2$ rates of convergence as well as an exponential inequality for the martingale terms of the recursive non linear Robbins-Monro algorithm.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.