First order convergence of matroids (1501.06518v3)
Abstract: The model theory based notion of the first order convergence unifies the notions of the left-convergence for dense structures and the Benjamini-Schramm convergence for sparse structures. It is known that every first order convergent sequence of graphs with bounded tree-depth can be represented by an analytic limit object called a limit modeling. We establish the matroid counterpart of this result: every first order convergent sequence of matroids with bounded branch-depth representable over a fixed finite field has a limit modeling, i.e., there exists an infinite matroid with the elements forming a probability space that has asymptotically the same first order properties. We show that neither of the bounded branch-depth assumption nor the representability assumption can be removed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.