Papers
Topics
Authors
Recent
2000 character limit reached

On the convergence analysis of the inexact linearly implicit Euler scheme for a class of SPDEs (1501.05816v1)

Published 23 Jan 2015 in math.PR

Abstract: This paper is concerned with the adaptive numerical treatment of stochastic partial differential equations. Our method of choice is Rothe's method. We use the implicit Euler scheme for the time discretization. Consequently, in each step, an elliptic equation with random right-hand side has to be solved. In practice, this cannot be performed exactly, so that efficient numerical methods are needed. Well-established adaptive wavelet or finite-element schemes, which are guaranteed to converge with optimal order, suggest themselves. We investigate how the errors corresponding to the adaptive spatial discretization propagate in time, and we show how in each time step the tolerances have to be chosen such that the resulting perturbed discretization scheme realizes the same order of convergence as the one with exact evaluations of the elliptic subproblems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.