Papers
Topics
Authors
Recent
2000 character limit reached

Duality and Modularity in Elliptic Integrable Systems and Vacua of N=1* Gauge Theories (1501.05074v2)

Published 21 Jan 2015 in hep-th

Abstract: We study complexified elliptic Calogero-Moser integrable systems. We determine the value of the potential at isolated extrema, as a function of the modular parameter of the torus on which the integrable system lives. We calculate the extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For so(5) we find convincing evidence that the extrema constitute a vector valued modular form for a congruence subgroup of the modular group. For so(7) and so(8), the extrema split into two sets. One set contains extrema that make up vector valued modular forms for congruence subgroups, and a second set contains extrema that exhibit monodromies around points in the interior of the fundamental domain. The former set can be described analytically, while for the latter, we provide an analytic value for the point of monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of the extrema. Our results on the extrema provide a rationale for integrality properties observed in integrable models, and embed these into the theory of vector valued modular forms. Moreover, using the data we gather on the modularity of complexified integrable system extrema, we analyse the massive vacua of mass deformed N=4 supersymmetric Yang-Mills theories with low rank gauge group of type B,C and D. We map out their transformation properties under the infrared electric-magnetic duality group as well as under triality for N=1* with gauge algebra so(8). We find several intriguing properties of the quantum gauge theories.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.