Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A new derivation of the Minkowski metric (1501.04857v8)

Published 15 Jan 2015 in physics.gen-ph and gr-qc

Abstract: The four dimensional spacetime continuum, as first conceived by Minkowski, has become the dominant framework within which to describe physical laws. In this paper, we show how this four-dimensional structure is a natural property of physical three-dimensional space, if modeled with Clifford geometric algebra $ C\ell(\Re3) $. We find that Minkowski spacetime can be embedded within a larger eight dimensional structure. This then allows a generalisation of the invariant interval and the Lorentz transformations. Also, with this geometric oriented approach the fixed speed of light, the laws of special relativity and a generalised form of Maxwell's equations, arise naturally from the intrinsic properties of the algebra without recourse to physical arguments. We also find new insights into the nature of time, which can be described as two-dimensional. Some philosophical implications of this approach as it relates to the foundations of physical theories are also discussed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.