Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Imputation of truncated p-values for meta-analysis methods and its genomic application (1501.04415v1)

Published 19 Jan 2015 in stat.AP and q-bio.QM

Abstract: Microarray analysis to monitor expression activities in thousands of genes simultaneously has become routine in biomedical research during the past decade. A tremendous amount of expression profiles are generated and stored in the public domain and information integration by meta-analysis to detect differentially expressed (DE) genes has become popular to obtain increased statistical power and validated findings. Methods that aggregate transformed $p$-value evidence have been widely used in genomic settings, among which Fisher's and Stouffer's methods are the most popular ones. In practice, raw data and $p$-values of DE evidence are often not available in genomic studies that are to be combined. Instead, only the detected DE gene lists under a certain $p$-value threshold (e.g., DE genes with $p$-value${}<0.001$) are reported in journal publications. The truncated $p$-value information makes the aforementioned meta-analysis methods inapplicable and researchers are forced to apply a less efficient vote counting method or na\"{i}vely drop the studies with incomplete information. The purpose of this paper is to develop effective meta-analysis methods for such situations with partially censored $p$-values. We developed and compared three imputation methods - mean imputation, single random imputation and multiple imputation - for a general class of evidence aggregation methods of which Fisher's and Stouffer's methods are special examples. The null distribution of each method was analytically derived and subsequent inference and genomic analysis frameworks were established. Simulations were performed to investigate the type I error, power and the control of false discovery rate (FDR) for (correlated) gene expression data. The proposed methods were applied to several genomic applications in colorectal cancer, pain and liquid association analysis of major depressive disorder (MDD). The results showed that imputation methods outperformed existing na\"{i}ve approaches. Mean imputation and multiple imputation methods performed the best and are recommended for future applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.