Papers
Topics
Authors
Recent
2000 character limit reached

Spatial Wireless Channel Prediction under Location Uncertainty (1501.03654v2)

Published 15 Jan 2015 in cs.IT and math.IT

Abstract: Spatial wireless channel prediction is important for future wireless networks, and in particular for proactive resource allocation at different layers of the protocol stack. Various sources of uncertainty must be accounted for during modeling and to provide robust predictions. We investigate two channel prediction frameworks, classical Gaussian processes (cGP) and uncertain Gaussian processes (uGP), and analyze the impact of location uncertainty during learning/training and prediction/testing, for scenarios where measurements uncertainty are dominated by large-scale fading. We observe that cGP generally fails both in terms of learning the channel parameters and in predicting the channel in the presence of location uncertainties.\textcolor{blue}{{} }In contrast, uGP explicitly considers the location uncertainty. Using simulated data, we show that uGP is able to learn and predict the wireless channel.

Citations (92)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.