Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Measure rigidity of Ricci curvature lower bounds (1501.03338v2)

Published 14 Jan 2015 in math.MG

Abstract: The measure contraction property, $\mathsf{MCP}$ for short, is a weak Ricci curvature lower bound conditions for metric measure spaces. The goal of this paper is to understand which structural properties such assumption (or even weaker modifications) implies on the measure, on its support and on the geodesics of the space. We start our investigation from the euclidean case by proving that if a positive Radon measure $\mathsf{m}$ over $\mathbb{R}{d}$ is such that $(\mathbb{R}{d},|\cdot |, \mathsf{m})$ verifies a weaker variant of $\mathsf{MCP}$, then its support $\text{spt}(\mathsf{m})$ must be convex and $\mathsf{m}$ has to be absolutely continuous with respect to the relevant Hausdorff measure of $\text{spt}(\mathsf{m})$. This result is then used as a starting point to investigate the rigidity of $\mathsf{MCP}$ in the metric framework. We introduce the new notion of $reference \ measure$ for a metric space and prove that if $(X,\mathsf{d},\mathsf{m})$ is essentially non-branching and verifies $\mathsf{MCP}$, and $\mu$ is an essentially non-branching $\mathsf{MCP}$ reference measure for $(\text{spt}(\mathsf{m}), \mathsf{d})$, then $\mathsf{m}$ is absolutely continuous with respect to $\mu$, on the set of points where an inversion plan exists. As a consequence, an essentially non-branching $\mathsf{MCP}$ reference measure enjoys a weak type of uniqueness, up to densities. We also prove a stability property for reference measures under measured Gromov-Hausdorff convergence, provided an additional uniform bound holds. In the final part we present concrete examples of metric spaces with reference measures, both in smooth and non-smooth setting.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube