Fine asymptotic behavior in eigenvalues of random normal matrices: Ellipse Case (1501.02781v2)
Abstract: We consider the random normal matrices with quadratic external potentials where the associated orthogonal polynomials are Hermite polynomials and the limiting support (called droplet) of the eigenvalues is an ellipse. We calculate the density of the eigenvalues near the boundary of the droplet up to the second subleading corrections and express the subleading corrections in terms of the curvature of the droplet boundary. From this result we additionally get the expected number of eigenvalues outside the droplet. We also obtain the asymptotics of the kernel and found that, in the bulk, the correction term is exponentially small. This leads to the vanishing of certain Cauchy transform of the orthogonal polynomial in the bulk of the droplet up to an exponentially small error.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.