Papers
Topics
Authors
Recent
2000 character limit reached

Fine asymptotic behavior in eigenvalues of random normal matrices: Ellipse Case (1501.02781v2)

Published 12 Jan 2015 in math-ph, math.CA, math.MP, and math.PR

Abstract: We consider the random normal matrices with quadratic external potentials where the associated orthogonal polynomials are Hermite polynomials and the limiting support (called droplet) of the eigenvalues is an ellipse. We calculate the density of the eigenvalues near the boundary of the droplet up to the second subleading corrections and express the subleading corrections in terms of the curvature of the droplet boundary. From this result we additionally get the expected number of eigenvalues outside the droplet. We also obtain the asymptotics of the kernel and found that, in the bulk, the correction term is exponentially small. This leads to the vanishing of certain Cauchy transform of the orthogonal polynomial in the bulk of the droplet up to an exponentially small error.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.