On Chern-Yamabe problem
Abstract: We initiate the study of an analogue of the Yamabe problem for complex manifolds. More precisely, fixed a conformal Hermitian structure on a compact complex manifold, we are concerned in the existence of metrics with constant Chern scalar curvature. In this note, we set the problem and we provide a positive answer when the expected constant Chern scalar curvature is non-positive. In particular, this includes the case when the Kodaira dimension of the manifold is non-negative. Finally, we give some remarks on the positive curvature case, showing existence in some special cases and the failure, in general, of uniqueness of the solution.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.