Papers
Topics
Authors
Recent
2000 character limit reached

A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot type fractal functions (1501.01942v1)

Published 8 Jan 2015 in math-ph, cond-mat.stat-mech, and math.MP

Abstract: We demonstrate that the fractional Laplacian (FL) is the principal characteristic operator of harmonic systems with {\it self-similar} interparticle interactions. We show that the FL represents the "{\it fractional continuum limit}" of a discrete "self-similar Laplacian" which is obtained by Hamilton's variational principle from a discrete spring model. We deduce from generalized self-similar elastic potentials regular representations for the FL which involve convolutions of symmetric finite difference operators of even orders extending the standard representation of the FL. Further we deduce a regularized representation for the FL $-(-\Delta){\frac{\alpha}{2}}$ holding for $\alpha\in \R \geq 0$. We give an explicit proof that the regularized representation of the FL gives for integer powers $\frac{\alpha}{2} \in \N_0$ a distributional representation of the standard Laplacian operator $\Delta$ including the trivial unity operator for $\alpha\rightarrow 0$. We demonstrate that self-similar {\it harmonic} systems are {\it all} governed in a distributional sense by this {\it regularized representation of the FL} which therefore can be conceived as characteristic footprint of self-similarity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.