Central Limit Theorem for Adaptative Multilevel Splitting Estimators in an Idealized Setting (1501.01399v1)
Abstract: The Adaptive Multilevel Splitting algorithm is a very powerful and versatile iterative method to estimate the probability of rare events, based on an interacting particle systems. In an other article, in a so-called idealized setting, the authors prove that some associated estimators are unbiased, for each value of the size n of the systems of replicas and of resampling number k. Here we go beyond and prove these estimator's asymptotic normality when h goes to infinity, for any fixed value of k. The main ingredient is the asymptotic analysis of a functional equation on an appropriate characteristic function. Some numerical simulations illustrate the convergence to rely on Gaussian confidence intervals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.