Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric Tensor Representations (1501.01058v2)

Published 6 Jan 2015 in math.OC

Abstract: In this paper we study multivariate polynomial functions in complex variables and the corresponding associated symmetric tensor representations. The focus is on finding conditions under which such complex polynomials/tensors always take real values. We introduce the notion of symmetric conjugate forms and general conjugate forms, and present characteristic conditions for such complex polynomials to be real-valued. As applications of our results, we discuss the relation between nonnegative polynomials and sums of squares in the context of complex polynomials. Moreover, new notions of eigenvalues/eigenvectors for complex tensors are introduced, extending properties from the Hermitian matrices. Finally, we discuss an important property for symmetric tensors, which states that the largest absolute value of eigenvalue of a symmetric real tensor is equal to its largest singular value; the result is known as Banach's theorem. We show that a similar result holds in the complex case as well.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.