Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Well-Conditioned and Sparse Estimation of Covariance and Inverse Covariance Matrices Using a Joint Penalty (1412.7907v4)

Published 26 Dec 2014 in math.ST and stat.TH

Abstract: We develop a method for estimating well-conditioned and sparse covariance and inverse covariance matrices from a sample of vectors drawn from a sub-gaussian distribution in high dimensional setting. The proposed estimators are obtained by minimizing the quadratic loss function and joint penalty of `1 norm and variance of its eigenvalues. In contrast to some of the existing methods of covariance and inverse covariance matrix estimation, where often the interest is to estimate a sparse matrix, the proposed method is flexible in estimating both a sparse and well-conditioned covariance matrix simultaneously. The proposed estimators are optimal in the sense that they achieve the minimax rate of estimation in operator norm for the underlying class of covariance and inverse covariance matrices. We give a very fast algorithm for computation of these covariance and inverse covariance matrices which is easily scalable to large scale data analysis problems. The simulation study for varying sample sizes and variables shows that the proposed estimators performs better than several other estimators for various choices of structured covariance and inverse covariance matrices. We also use our proposed estimator for tumor tissues classification using gene expression data and compare its performance with some other classification methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)