Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A convex framework for high-dimensional sparse Cholesky based covariance estimation (1610.02436v1)

Published 7 Oct 2016 in stat.ME

Abstract: Covariance estimation for high-dimensional datasets is a fundamental problem in modern day statistics with numerous applications. In these high dimensional datasets, the number of variables p is typically larger than the sample size n. A popular way of tackling this challenge is to induce sparsity in the covariance matrix, its inverse or a relevant transformation. In particular, methods inducing sparsity in the Cholesky pa- rameter of the inverse covariance matrix can be useful as they are guaranteed to give a positive definite estimate of the covariance matrix. Also, the estimated sparsity pattern corresponds to a Directed Acyclic Graph (DAG) model for Gaussian data. In recent years, two useful penalized likelihood methods for sparse estimation of this Cholesky parameter (with no restrictions on the sparsity pattern) have been developed. How- ever, these methods either consider a non-convex optimization problem which can lead to convergence issues and singular estimates of the covariance matrix when p > n, or achieve a convex formulation by placing a strict constraint on the conditional variance parameters. In this paper, we propose a new penalized likelihood method for sparse estimation of the inverse covariance Cholesky parameter that aims to overcome some of the shortcomings of current methods, but retains their respective strengths. We ob- tain a jointly convex formulation for our objective function, which leads to convergence guarantees, even when p > n. The approach always leads to a positive definite and symmetric estimator of the covariance matrix. We establish high-dimensional estima- tion and graph selection consistency, and also demonstrate finite sample performance on simulated/real data.

Summary

We haven't generated a summary for this paper yet.