Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Best estimation of functional linear models (1412.7332v4)

Published 23 Dec 2014 in math.ST, stat.ME, and stat.TH

Abstract: Observations which are realizations from some continuous process are frequent in sciences, engineering, economics, and other fields. We consider linear models, with possible random effects, where the responses are random functions in a suitable Sobolev space. The processes cannot be observed directly. With smoothing procedures from the original data, both the response curves and their derivatives can be reconstructed, even separately. From both these samples of functions, just one sample of representatives is obtained to estimate the vector of functional parameters. A simulation study shows the benefits of this approach over the common method of using information either on curves or derivatives. The main theoretical result is a strong functional version of the Gauss-Markov theorem. This ensures that the proposed functional estimator is more efficient than the best linear unbiased estimator based only on curves or derivatives.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.