Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

New Bounds for the Acyclic Chromatic Index (1412.6237v3)

Published 19 Dec 2014 in math.CO

Abstract: An edge coloring of a graph $G$ is called an acyclic edge coloring if it is proper and every cycle in $G$ contains edges of at least three different colors. The least number of colors needed for an acyclic edge coloring of $G$ is called the acyclic chromatic index of $G$ and is denoted by $a'(G)$. Fiam\v{c}ik and independently Alon, Sudakov, and Zaks conjectured that $a'(G) \leq \Delta(G)+2$, where $\Delta(G)$ denotes the maximum degree of $G$. The best known general bound is $a'(G)\leq 4(\Delta(G)-1)$ due to Esperet and Parreau. We apply a generalization of the Lov\'{a}sz Local Lemma to show that if $G$ contains no copy of a given bipartite graph $H$, then $a'(G) \leq 3\Delta(G)+o(\Delta(G))$. Moreover, for every $\varepsilon>0$, there exists a constant $c$ such that if $g(G)\geq c$, then $a'(G)\leq(2+\varepsilon)\Delta(G)+o(\Delta(G))$, where $g(G)$ denotes the girth of $G$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube