Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Local stability of Kolmogorov forward equations for finite state nonlinear Markov processes (1412.5555v2)

Published 17 Dec 2014 in math.PR

Abstract: The focus of this work is on local stability of a class of nonlinear ordinary differential equations (ODE) that describe limits of empirical measures associated with finite-state weakly interacting N-particle systems. Local Lyapunov functions are identified for several classes of such ODE, including those associated with systems with slow adaptation and Gibbs systems. Using results from [5] and large deviations heuristics, a partial differential equation (PDE) associated with the nonlinear ODE is introduced and it is shown that positive definite subsolutions of this PDE serve as local Lyapunov functions for the ODE. This PDE characterization is used to construct explicit Lyapunov functions for a broad class of models called locally Gibbs systems. This class of models is significantly larger than the family of Gibbs systems and several examples of such systems are presented, including models with nearest neighbor jumps and models with simultaneous jumps that arise in applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.